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Identification of microdefect distribution in a 

monocrystalline silicon wafer is key to quality control as 
well as process development. The microdefect-decoration 
is accomplished by saturating the silicon wafer with 
copper at a high temperature followed by copper 
precipitate growth through rapid cooling followed by 
surface polishing and subsequent decorating etching. 

The microdefect field consists of etch-pits 
(valleys) formed by the difference in the etching rates of 
the copper precipitates and the etching rate of the 
surrounding defect-free silicon. Etching is a three-phase 
process that involves, transport of reagents from the bulk-
liquid phase to the solid surface through a stagnant mass-
transport film, surface reactions and transport of products 
back to the bulk-liquid, in that order. In this work it is 
argued that the macro-decoration of microdefects is 
typically realized in the absence of significant effect of 
the liquid-phase diffusion of reactants.  
 The competing effects of kinetics towards the 
microdefect-decoration and liquid-phase transport 
towards surface smoothening are quantified by 
theoretically derived closed form solutions for the 
decorating efficiency and the microdefect-polishing 
efficiency. Auto-erosion of the microdefects by mildly 
polishing etchants is also quantified. Closed form 
solutions for the microdefect-decorating and microdefect-
polishing conditions are presented.  

Potentially decorating and polishing etchants can 
be classified based on their dependence on the reactor 
hydrodynamics. The decorating etchants show a weak 
dependence on the hydrodynamics in the reactor whereas 
the polishing etchants show a strong dependence on the 
reactor hydrodynamics. The surface irregularities are 
preserved in a decorating etchant whereas a polishing 
etchant erases the surface irregularities. 

The proposed theories are verified by 
experimental data. 
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Figure 1. Effect of the mass-transport-film thickness on 
the decorating efficiency for a given pit depth and 

idis ,, ξξ . 

 
Figure 2. Effect of the effective diffusivity on the 
decorating efficiency for a given pit depth, mass-transport  

film thickness and idis ,, ξξ . 

 
Figure 3. Dependence of decorating and polishingetchants 

on reactor hydrodynamics 
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